Expression of GADS enhances FLT3-induced mitogenic signaling
نویسندگان
چکیده
منابع مشابه
Expression of GADS enhances FLT3-induced mitogenic signaling
GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain o...
متن کاملIntrathymic expression of Flt3 ligand enhances thymic recovery after irradiation
Hematopoietic stem cell transplantation (HSCT) requires conditioning treatments such as irradiation, which leads to a severely delayed recovery of T cell immunity and constitutes a major complication of this therapy. Currently, our understanding of the mechanisms regulating thymic recovery is limited. It is known that a subpopulation of bone marrow (BM)-derived thymic immigrant cells and the ea...
متن کاملFYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia
FYN is a non-receptor tyrosine kinase belonging to the SRC family of kinases, which are frequently over-expressed in human cancers, and play key roles in cancer biology. SRC has long been recognized as an important oncogene, but little attention has been given to its other family members. In this report, we have studied the role of FYN in FLT3 signaling in respect to acute myeloid leukemia (AML...
متن کاملCytochrome P-450 metabolites mediate norepinephrine-induced mitogenic signaling.
Norepinephrine (NE) stimulates release of arachidonic acid (AA) from tissue lipids in blood vessels, which is metabolized via cyclooxygenase, lipoxygenase (LO), and cytochrome P-450 (CYP-450) pathways to biologically active products. Moreover, NE and AA have been shown to stimulate proliferation of vascular smooth muscle cells (VSMCs) of rat aorta. The purpose of this study was to determine the...
متن کاملNotch signaling enhances nestin expression in gliomas.
Recent findings suggest that Notch signaling is active in brain tumors and stem cells, and that stem cells or cells with progenitor characteristics contribute to brain tumor formation. These stem cells are marked by expression of several markers, including nestin, an intermediate filament protein. We have studied how the Notch signaling pathway affects nestin expression in brain tumors. We find...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Oncotarget
سال: 2016
ISSN: 1949-2553
DOI: 10.18632/oncotarget.7415